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An efficient algorithm for the solution of compressible magnetohydrodynamic equations in 
a three-dimensional geometry is presented. Compressional Alfven waves are treated implicitly, 
thus greatly increasing the stable time step of the calculation and making it possible to study 
magnetohydrodynamic (MHD) phenomenon on resistive time scales. 0 1985 Academic Press, Inc 

1. INTRODUCTION 

In recent years numerous algorithms have been developed to solve various forms 
of the magnetohydrodynamic (MHD) equations in three-dimensional geometries. 
One quite successful approach has made use of the reduced MHD equations [ 1,2]. 
Early calculations along these lines have retained only the leading order terms in 
the aspect ratio expansions [3-61, while recently some tokamak calculations have 
included higher order corrections [7, 81. Although these algorithms are quite 
efficient, they inherently have limited applicability, since a tokamak ordering is used 
in the derivation of the equations; i.e., B,/B, -O(E), where B, and B, are the 
poloidal and toroidal components of the magnetic field, and E is the ratio of the 
minor to major radius of the torus. 

A second approach with more general applications uses the primitive, non- 
reduced MHD equations. However, the compressional Alfven waves, which are 
ordered out of the system in the low order reduced equations, cause severe time 
step restrictions in the direct application of the primitive equations. Explicit 
algorithms which follow phenomena occurring on this fast compressional time 
scale, even when they employ highly efficient spectral techniques [9], are not quite 
suitable for studying the nonlinear evolution of resistive MHD modes, which occurs 
on a much longer time scale. An implicit algorithm based on AD1 technique was 
presented by Finan [lo]; however, it uses a three-dimensional grid and is subject 
to the inefficiencies and inaccuracies of finite difference techniques in a three-dimen- 
sional geometry. 

At the expense of ignoring some relevant physics, the problem associated with 
compressional waves can be overcome by assuming the fluid flow to be incom- 
pressible, which removes the fast Alfven waves from the system. An algorithm that 
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makes use of the incompressible MHD equations has been presented earlier 
[ll, 121 and applied to the study of resistive kink modes in the Reversed Field 
Pinch (RFP) [13]. In these works, without the presence of the compressional 
waves, it has been possible to study the sustainment of the reversed field in the RFP 
on a resistive time scale. 

The incompressibility assumption is not strictly valid, especially in an RFP, and 
needs to be justified a posterior-i. For this purpose, we have developed an algorithm 
that solves the compressible MHD equations in a three-dimensional geometry 
[ 141. So as not to be limited by the compressional time scale, however, those terms 
in the equations that drive the compressional waves are treated implicitly. The 
maximum stable time step in the resulting algorithm is determined by the shear 
Alfven waves, as in the incompressible equations, and it is more than an order of 
magnitude larger than the time step of a corresponding explicit calculation. A 
somewhat similar algorithm for implicit treatment of compressional waves has been 
presented earlier by Jardin for two dimensional ideal MHD calculations [15]. 

The outline of the paper is as follows. In the next section the equations used in 
our compressible code (CTD) will be summarized. The implicit algorithm will be 
discussed in Section 3. In Section 4, comparisons will be made between implicit and 
explicit versions of the code, and some preliminary results from RFP calculations 
will be presented and compared with our earlier incompressible results. Section 5 
will summarize the paper. 

2. EQUATIONS 

The compressible, nonlinear, resistive magnetohydrodynamic equations are writ- 
ten in the following form: 

$+(wV)p= -pv*u, 

;+(u-V)u =JxB-Vp+v 1 -vxvxu++) ) 1 
dA 
-=uxB-;J, at 

$+(u.V)p= -rpv,u, 

B=VxA, (5) 

J=VxB. (6) 

The variables have their usual meanings. p is the mass density; II, B, and E are 
velocity, magnetic, and electric fields, respectively; and p is the kinetic pressure. 
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Instead of B, the vector potential A is advanced in time using a gauge in which the 
scalar potential vanishes. r is the ratio of the specific heats. S, the magnetic 
Reynolds number, is the ratio of the diffusion time z, = ~~a*/1 to the Alfven time 
zh = a/u,, where uh = Bo/(popo)“*, and v is the coefficient of viscosity. The scale 
length a is the minor radius. B, and p,, are, respectively, the characteristic field 
strength and mass density used in the normalizations. In the present version of the 
code, a uniform mass density (p = 1) is assumed, and Eq. (1) is dropped from the 
system. 

3. NUMERICAL METHODS 

Equations (2)-(6) are solved in a cylindrical geometry with periodic end boun- 
dary conditions. As in the incompressible algorithm ITD [12], the variables are 
expanded in Fourier series in the periodic coordinates 8 and [. The angle c is 
related to the usual coordinate z through i = z/R,, where R, is the normalized 
major radius. Finite differences are used in the radial direction with a staggered 
mesh [12]. 

The quadratic nonlinearities in Eqs. (2)-(4) lead to convolution sums in the 
Fourier space which are treated either through direct summations, or using Fast 
Fourier Transforms (FFT) [16]. When FFTs are used, aliasing errors introduced 
by the discrete transforms quickly degrade the solution, especially in the higher har- 
monics. For long time study of MHD phenomena, we have found it necessary to 
remove these errors. This “dealiasing” is accomplished by embedding the quantities 
to be convoluted in approximately 50% longer arrays in each of the two transform 
directions [ 163. Using the one-dimensional sum 

w(m) = 1 u(m’) u(m -m’), -Mcm, m’dM, 
m’ 

as an example, the dealiased FFT convolution proceeds as follows. 
First, arrays d(m), O(m) are defined as 

(@m), 6(m)) = (u(m), WI) for -M-cm<M, 

(fib), 6(m)) = (0, 0) for --&-cm< -M, M-em<&, 

where fi is determined by M d 2i@/3 using integer arithmetic. Then 

w(m) = FFT-‘(FFT(li) x FFT(B)) for -M<m<M, 

w(m) = 0 otherwise. 

Note that since fi needs to be in the form 2p, where p is an integer, in calculations 
using FFT convolutions, first the mode numbers fi, fi are chosen, from which the 
boundaries of the dealiased region in the Fourier space are determined using 
M < 21@/3, N < 2@3. 
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Using Buneman’s vectorized FFT subroutine VCFT [17], and performing two 
real transforms simultaneously, dealiased FFT convolutions with fi = fi= 8, and 
the corresponding direct summations with M = N = 5 require approximately equal 
amounts of time on the Cray-1. For larger number of modes, FFT convolutions are 
more efficient. 

3.1. Temporal DijjCerencing 

As in the solution of incompressible equations [12], a first order predictor- 
corrector scheme is used to advance Eqs. (2)-(6) in time. In the predictor step, 
provisional values u*, A*, and p* are calculated using the equations 

u* = u”+St[ -(u”.V) u”+ J” x B”-VP”], 

A* = A” + &[u” x B”], 

p*=p”+ht[-( un * V) p” - fp”v . u” 1, 

B*=VxA*, J*=VxB*. 

(7) 

(8) 

(9) 

(10) 

Time-step splitting is used in the corrector step to separate the viscous and ohmic 
dissipation terms from the rest of the quantities: 

U *n+ l= u” + (jt 
[ 

-(u*V)U*+J*XB*+V+?“+~ , 1 
A -n+l=A”+&[Q”+lxB*], 

P *n+l=pn+6t[-(u*.V)p*-Tp*V.i”+‘], 

B ^n+l =vxAntl, 

(11) 
(12) 

(13) 

(14) 

n=p+;, (15) 

un+l=Q”+l+&y -vxVxu”+l+~v(v.u”+’ 
[ (16) 

A n+l- ^?I+1 -A +xVxA”+‘, (17) 

P n+l=bn+l. (18) 

Note that in Eqs. (1 l)-( 13), only those terms that drive the compressional waves 
are treated implicitly, which, as discussed in the Appendix, is necessary to avoid the 
time-step constraint set by the compressional Alfven waves. 

An obvious difficulty at this point is that Eqs. (1 l)-( 15) cannot be solved easily, 
for the solution would require inversion of a system of the form 
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where eTn+1=(,n+1,;in+1,8”+1)‘. Th e matrix A will in general have rank 
(7Z(MN)), where Z is the number of radial grid points, and (MN) is the total num- 
ber of Fourier modes. Inversion of such large matrices at each time step is difficult 
and undesirable. Thus, the most important part of the implicit algorithm employed 
in CTD involves the solution of the equations in the corrector step in an efficient 
manner. This algorithm is discussed in the next section. 

3.2. Solution of the Corrector Equations 

To solve the corrector equations efficiently, the quantities defined in 
Eqs. ( 1 1 )-( 13) are first expanded about the known predictor quantities: 

*n+ I u =u* +chn+l, (19) 

A -nil=A*+~A”fl, (20) 

P 
An+1 =p*+6p”+l. (21) 

Now if Eqs. (19)-(21) are substituted into Eqs. (11)(13), we get 

6U “+‘=Au-6tV611niL, (22) 

6A “+‘=AA+&&f+‘xB*, (23) 

SP “+‘=Ap-&Tp*VGW+‘, (24) 

where Au, AA, and Ap are the known errors in satisfying Eqs. (1 1 ))( 13) with the 
predictor quantities. Specifically, 

Au=u”-u*+ht[-(u*.V)u*+J*xB*-Vp*], (25) 

AA = A”- A* + &[u* x B*], (26) 

Ap=p”-p*+6t[-(u*.V)p*-Tp*V.u*]. 

Note that an explicit algorithm is obtained by letting 

(27) 

U A:x’,‘=Au+u*, (28) 

;i$ = AA + A*, (29) 

P ̂Il,f,‘=Ap+p*. (30) 

Thus, Au, AA, and Ap are the explicit corrections, whereas &I”+ ‘, dA”+‘, and 
SP n+ ’ are the implicit corrections to be added to the corrector values to obtain the 
corresponding explicit, and implicit values, respectively, at the new time step. 

The 6ZZ” + ’ term in Eq. (22) is the difference between the total pressure at time 
n + 1 and the total pressure computed from the predictor quantities. That is, 
Eqs. (22)-(24) are exactly equivalent to Eqs. (11 b( 13) provided that 

(31) 
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Since Eq. (31) contains B”+’ (and therefore dA”+‘) quadratically, Eqs. (22b(24) 
are nonlinear. At this point, the corrector system is linearized by redefining 6I7”+ ’ 
to be linear in 6B n+1=Bn+1-B*=V~6A”+1. Thus, Eq.(31) is replaced by 

sn~+‘=~pfl+‘+B*.6B”+‘, (31’) 

where dpn+l=p”+‘-p*. 
From Eqs. (22)-(24) and (31’) follows a linear equation for the correction 

617”+‘, 

srcl -6t2[Tp*V2&7”+1-B*VxV617”+1xB*] 

= -6tTp*V.Au+6tB*~VxAuxB*+B*.AB+Ap, 

where AB = V x AA. 

(32) 

While (32) is a linear equation for 6Z7”+l, the left-hand side contains non- 
constant coefficients. Thus, all Fourier modes will be coupled, unless p* and B* 
depend only on radius. Although this is not generally the case, it has been deter- 
mined empirically that stability is maintained for large time steps if only those 
terms resulting from 8 and [ independent components of p* and B* are retained in 
Eq. (32). Considering the order of those terms omitted, and the time-step constraint 
imposed by the shear Alfven waves, this observation is equivalent to the mixing 
length argument that the deviation of a field line from the mean field position never 
exceeds the perpendicular scale length of the perturbation. Thus, the actual correc- 
tor equation to be solved is obtained by replacing p* and B* by their mean (radius 
dependent) values: 

617”+’ -6t2[Tp,*V2617”+1-B~VxV617”+‘xB~] 

= -&Tp$V.Au+&B,*.VxAuxB,*+B,*.AB+Ap. (320 

To be consistent with Eq. (32’), the corrector equations (23) (24) and (31’) are 
also modified by replacing p* and B* by their mean values: 

6A “+‘=AA+&6u”+‘xB~, (230 
6p*+’ = Ap - St Tp,*V. 8unc1. (24’) 

sn~+‘=~ppn+l+Bo*.6B”+*. (31”) 

The Fourier transform of Eq. (32’) is tridiagonal in radius for each (m, n) and is 
thus easily inverted. With 6Z7’+’ determined, the remaining corrections are 
obtained using Eqs. (22), (23’), (24’), which are in turn substituted into 
Eqs. (19k(21) to obtain tY+l, A”+l, and @‘+l. 

Finally in Eqs. (16), (17), implicit diffusion terms are added to complete the 
corrector step. These equations lead to block tridiagonal systems for u(r; mn) and 
A(r; mn), which are inverted using standard techniques [IS]. 
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4. RESULTS 

In this section, we will make specific comparisons between implicit and explicit 
versions of the code and present some preliminary results from RFP calculations, 
comparing them to our earlier incompressible results. 

4.1. Explicit versus implicit Calculations 

An RFP calculation in which the nonlinear interaction of 58 Fourier modes on a 
radial grid with 64 points is performed using both the implicit and explicit versions 
of the code. The differences between the two calculations are summarized below: 

(a) The average time step for the explicit calculation is 2.48 x 10-3, whereas 
for the implicit one it is 5.13 x lo-*. If the calculations are continued, this difference 
increases further, since (6t)i,,~0.1 after the saturation of the dominant modes. 
Histories of (at) = t/Ncyc, where Ncyc is the number of cycles needed to reach time 
t, are shown in Figs. 1 and 2 for the implicit and explicit calculations, respectively. 
Note that (8t)imp is comparable to the average time step we observe in our incom- 
pressible calculations. 

(b) The implicit algorithm described above involves very little additional 
work compared to the corresponding explicit algorithm of Eqs. (28)-(30), since no 
convolutions are needed to obtain the implicit corrections. The work required for 
the solution of the elliptic equation (32’) for 6Z7”+ ’ is insignificant compared to the 
work in performing the convolution sums resulting from the nonlinear terms in 
Eqs. (7)-(9), (25)-(27). Time spent (on a Cray-1) per mode, per mesh point, per 
time step for the explicit RFP calculation is 2.08 x 1O-4 sec. For the implicit 
calculation this value is 2.16 x lop4 sec. Thus, with only a slight increase in the 
work performed, the time step is increased by a factor of 20. 

30 50 70 90 HO 

FIG. 1. Average time step (dt) for the implicit calculation. 
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FIG. 2. Average time step for the explicit calculation. 
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FIG. 3. Time history of the pinch parameter for the implicit calculation. 
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30 30 70 90 110 
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FIG. 4. Time history of the pinch parameter for the explicit calculation. 
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(c) Histories of the pinch parameter 0 = ( BO)W,a/( Br)vo,ume for the two 
calculations are shown in Figs. 3 and 4. The explicit calculation exhibits com- 
pressional oscillations, which are damped in the implicit one. 

In the next section, comparisons between compressible and incompressible 
calculations are made. 

4.2. Compressible versus Incompressible Calculations 

Self-reversal of the toroidal field in an RFP, and the dynamo mechanism that 
sustains the reversal are studied using the implicit compressible code CTD, and the 
results are compared to our earlier incompressible calculations [13]. For this pur- 
pose, the implicit calculations of the previous section are continued with the boun- 
dary condition Omin = 1.5, i.e., the current is allowed to decay until the pinch 
parameter decreases to Omin, at which point a toroidal electric field is applied at the 
boundary preventing further decay of the current. 

The dominant unstable modes of the initial zero-/? equilibrium, (m, n) = (1,2), 
and (m, n) = (1, 3), have growth rates that are larger by more than a factor of two 
in the compressible case. The saturation amplitudes of the modes are also larger 
(Fig. 5), which leads to a deeper initial reversal, as seen in the history plot of the 
reversal ratio F = (B, ) &( B, ) vo,ume. These should be compared to the incom- 
pressible results in Fig. 6. A striking difference between these two cases is the lack of 
a true steady state in the compressible calculation, whereas the incompressible case 
exhibits a steady sustained reversal for t > 450. However, the results are 
qualitatively similar in that the compressible calculation also exhibits a sustained 
reversal, albeit with some fluctuations. Finally, it should be noted that the average 
time step for the implicit compressible run increases to 9.46 x lo-* at the end of the 
calculation, with a gain of 38 over the corresponding explicit run. 

IO-’ 

200 400 600 000 

0.1 

0 

-0.1 

F 
-0.3 

-0.5 

-0.7 

FIG. 5. Time history of the kinetic energy and the reversal ratio F for the implicit compressible 
calculation. 
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FIG. 6. Time history of the kinetic energy and the reversal ratio for the incompressible calculation. 
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5. SUMMARY 

An efficient algorithm for the solution of compressible magnetohydrodynamic 
equations in a three-dimensional geometry has been developed. The compressional 
AlfvCn waves, which ordinarily lead to a severe time-step restriction rendering 
meaningful calculations with these equations uneconomical, are treated implicitly. 
With this implicit algorithm, calculations on a resistive time scale become feasible 
and are being performed in the study of Reversed Field Pinches. 

APPENDIX 

Numerical Stability Criterion 

Linearizing Eqs. (2t(6) and Fourier analyzing, we obtain for the perturbed 
quantities 

z = (ik * B,) b - ikZ7, 

$=(ik.Ba)u-(ik*u)B,, 

(A.11 

a17 
at- - -(fp, + Bz)(ik . II) + (ik * B,)(u * B,), 04.3) 

where k is the wave vector, and I7= p + B. * b. 
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Concentrating on the compressional branch by letting k,, = 0 and applying the 
explicit predictor-corrector scheme, we obtain for the vector (u, n)’ the 
amplification matrix 

G= 
1 - 6t2 k2 v2 I 5) -6t ik, 
-61 ik,v,2, 1 - 6t2 k2 I v2 s 

(A.41 

where vf = (Tp, + Bi) is the magnetosonic speed. 
The stability criterion 

hp IklB0l,,, < 1 (A.5) 

follows from the eigenvalues of G, where we used P~Q Bi. 
In contrast, the eigenvalues of the amplification matrix for the implicit equations 

U nfl=un-gfikinn+l, (A.61 

n n+‘=fl”-~tivSk,.u”+’ (A.71 

have the magnitude 
1 

‘I’ = [l +&2k:uf]1’2 (A.81 

implying unconditional stability. In this case, the shear Alfven branch with k, = 0 
determines numerical stability. Letting k, = 0 in Eqs. (A.1 )-(A.3), we obtain 

l-6t2k2B2 II 0’ iGtk,,B, u” 
i 6t k,, B,, 1 - 6t2 k2 B2 II 0 )( > b” 64.9) 

with the stability criterion 

atimp IkllBolmax< 1, (A.lO) 

which is also the stability criterion for the incompressible equations with the same 
predictor-corrector scheme. Since k,,,,,-M, and kl,,,~ M/c%, where M is the 
largest poloidal mode number included in the calculations 

6timp klmax 1 -w---g 1. 6t =P kllmax ar 

Note that in Eq. (A.8), il< 1 for large &, leading to damping of the compressional 
modes, as expected. 
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